
A short exampleA short example

Let’s take eeMod for a short drive. We’re going to use eeMod to:
 1. Get the 3D Gyro data from the microcontroller, using Arduino

2. Send the data of 2 axis from the microcontroller to the PC continuously
3. Interpret the data using Processing (open source program used mostly for object visualization:
https://processing.org)
4. Display an object in Processing and turn it around according to how we turn eeMod

Getting 3D Gyro Data

Before we get started, let’s get some technical definitions out of the way:

From the system diagram we can tell that the 3D Gyroscope is digital in nature and communicates with the
microcontroller using I2C. Since we’re using Arduino, the protocol has already been written and our programming
will be of high level. This means that we will use the “Wire” library to send and receive data over the I2C line:
https://www.arduino.cc/en/Reference/Wire.

Gyroscope: A gyroscope is a sensor that measures the degree of rotation with respect to a certain axis. This means
that if you put a gyroscope on a spinning wheel, the gyroscope will output the rotational velocity (how fast it’s
spinning in a certain direction), e.g. 360o/second.

Explain it to me as if I were 5 years old

I2C: Stands for Inter-Integrated Circuit. It’s one of the digital communication protocols used by different peripherals
to communicate with each other in low speed. In our case, we have the Gyroscope communicating with the
Microcontroller using I2C.

Ok, now let’s get started...

ATmega2560-16AUR
Arduino

Clock Speed: 16MHz
Operating Voltage: +3.3V

3D Gyro

SCL
SDA

Fig 1. Bottom Board Fig 2. Bottom Board: Showing the Gyroscope

Fig 3. System Diagram Snippet

A short exampleA short example

The Arduino Wire library is written in such a way that pins 20 (SDA) and 21 (SCL) of the ATmega2560 are
automatically assigned the I2C functionality. This means that to send data to the Gyro, we will have to write
something like this:

The process of initializing the Gyro and reading the data is similar to an interview: there’s an interviewer asking
questions and the interviewee answering them and providing information. In this case, the microcontroller is the
master, and the gyroscope is the slave. Communication involves multiple sending and receiving of addresses and
acknowledgements that together make up information.

We are not going to list the registers or transmission protocol, for that you can read the datasheet of the sensor at
https://goo.gl/MoFihj

On top of that, given that all the sensors on eeMod are widely available and used by the open source community,
several libraries have already been written, so we’ll use one just to give an example. If you’re an engineer, you might
want to write your own library but let’s not re-invent the wheel for now. We’re going to use a library called
“Adafruit_L3GD20”. This library packages all the communication involved in the I2C into few simple lines of code, so
instead of writing the above lines of code we can simply call the library functions and obtain the x, y and z rotation
readings from the gyro. Note that this oversimplifies the solution and finding a ready-made library might not always
be the best choice, but to keep things simple and clean, we’re going to show you just how compressed the code
becomes:

The code itself is self-intuitive and needs little explanation (see the comments). The Gyro is started in the setup(),
which is run once, and the loop() repeatedly gets the gyro data through gyro.read(); and outputs it to the PC
through the serial port (USB connection with the PC in eeMod/Bluetooth/XBee depending on Serial, Serial1, Serial2,
Serial3 initialization).

In Serial Terminal:

Idle: eeMod just kept as still as possible

Active: eeMod lifted up and rotated
randomly

Between each line there is approximately 100ms delay due to delay(100);

A short exampleA short example

In order to prepare the data for the Processing application, let’s modify the code a bit. We’ll include a threshold and
send the ‘x’, ‘y’ and ‘z’ angles with ‘|’ in between. This is done so in the application we can distinguish between the
‘x’, ‘y’ and ‘z’ data. It will make processing much easier.

Send data to the PC continuously

In order to prepare the data for the Processing application, let’s modify the code a bit. We’ll include a threshold and
send the ‘x’ and ‘y’ rotations with ‘|’ in between. This is done so in the application we can easily distinguish between
the ‘x’ and ‘y’ data. It will make processing much easier.

Interpret the data from Processing

In Processing, all we need to do is:

· Open the Serial Port according to the port name given to eeMod, e.g. COM1
· Read the data sent from eeMod, e.g. 34 | 76, which represent the ‘x’ and ‘y’ angular rotations
· Process the data and make any adjustments we want. This includes verifications that the received data is
complete and correct as well as any filtering we might want to include
· Draw the cube shape and rotate the cube according to the rotations supplied by eeMod

Having downloaded and installed Processing from https://processing.org, we can get coding.

A short exampleA short example

To display an object in on in the window we’re going to use the P3D. After getting the window displayed using the
“size” command, we should draw the object. Note that this code runs continuously, which means the object is going
to be displayed according to the refresh rate of the program. This specifically depends on how intensive the
functions in the “void draw()” are as well as your PC capabilities. Graphics renderings usually require a powerful
graphics card in order to run smoothly, which is why we restricted the object to be a simple cube.

Display an object in Processing and turn it with eeMod’s rotation

If we simply write the lines “size(…)” and “box(300)” in draw(), a box will be displayed as shown below:

We want to be able to rotate the cube and see it in the middle of the window. On top of that, we need to refresh
the background, otherwise the points where the cube was will still be displayed as the cube is rotated. It’s this
simple:

The function “_processData()” processes the dataXYZ array. dataXYZ contains the x, y and z angles, in that order. So
as an example, dataXYZ[0] = “23”. Notice the quotes, implying that dataXYZ is still a string. To convert “23” into a 32-
bit integer we simply use the Integer.parseInt(…) function, e.g. x = Integer.parseInt(dataXYZ[0]); // x is an integer

Fig 4. Processing Application

A short exampleA short example

Once the Arduino program is uploaded to eeMod (press the upload button at the top left corner of the Arduino IDE
and the TX, RX, and PWM 13 LEDs will flicker indicating that the program is uploading. The correct COM port and
microcontroller must be selected), the Processing application can be run.

Fig 5. eeMod connected to the PC via USB Fig 6. eeMod being programmed

A short exampleA short example

Running the Processing application will first display a reddish cube, and once eeMod is turned around, so will the
cube. The good thing is that in software, you can pretty much do anything. We could have easily put a 3D model of
eeMod and turned it around as we turned the actual model. Or increase or decrease the volume of the PC as we turn
it around, shake it, cover it, get close to it, etc.

eeMod

Fig 7. Final result. Screenshots taken from the Processing Application

